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Abstract. A unified framework is presented with which to treat the metal-nonmetal 
and liquid-vapour transitions of simple metaldtom fluids. The basic element consists of 
allowing the electrons in the system a choice between delacalbed mnducting states and 
localued atomic valence states. Thermal equilibrium khveen such states, at Exed total 
density, leads to the metal-non-metal Vansition. Replacing this constraint by the equal 
total pressure and chemiel potential one yields the liquid-vapour transition. Both phase 
Iransitions. with their uniljiying and differentiating aspects, are obtainable. The s p e c "  
of experimental observations in the alkali-atom fluids can be qualitatively r e p r o d u d ,  
even with extremely simplihed assumptions. 

The metal-non-metal (MNM) and liquid-vapour (LV) transitions in fluids, such as 
those of the alkali atoms, have been closely linked through a body of experimental 
data that has become quite precise and reliable in the last decade and that spans 
thermodynamic and electrical measurements under the same conditions [I]. This 
body of data still seeks a microscopic theoretical foundation, as noted in the recent 
review by Stratt 121. Previous theoretical efforts to explain the data coherently have 
been sparse. The points of view usually taken begin with the limiting cases of a 
metallic dense liquid or solid, or a nonmetallic dilute vapour, and then attempt to 
describe the fluid over a limited density and temperature range [>SI. This situation 
is unsatisfactory for unifying the transitions while differentiating between them. We 
present an alternative that is satisfactory in this respect 

In this paper we discuss a general framework and then, as an example, 
an extremely simple model, which yields in qualitative terms the electronic and 
thermodynamic features observed experimentally in the alkali-atom fluids: a liquid- 
vapour transition that hides a metal-non-metal one; also, an LV coexistence with a 
critical point whose temperature is a weak function of the vacuum ionization potential 
of the atoms in the material, but whose density and pressure are increasing functions 
of that potential. This simple model, though unrealistic for the alkali-atom fluids, 
shows that our general framework can achieve the above results, and it is generalizable 
to realistic interactions. 
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The crucial simplifying aspect of the framework presented is the assumption that 
the fluid of interest can be described as an interacting mixture of neutral ground-state 
atoms, monopositive ions and neutralizing delocalized conduction electrons. Thus the 
electrons are being given a variational choice between delocalized conduction states 
and ground-state atomic valence states that are localized, mainly due to exchange 
and correlation effects, on the ions to make up neutral atoms. This mixture provides 
sufficient flexibility with which to describe both a liquid and a vapour, as well as a 
metallic or non-metallic fluid (dominantly atomic, with thermally activated conduction 
electrons). We shall show that this proposal can lead to unified but distinct MNM and 
LV transitions with characteristics typical of those observed experimentally. Such a 
unScation has been unavailable up to now, though a similar approach was investigated 
by Gitterman and Steinberg [6]. 

Charge neutrality constrains the system to equal ionic and conduction-electron 
densities; the above mixture thus has two-components. Requiring thermodynamic 
equilibrium between these two species constrains the difference of their chemical 
potentials. That is, the cycle in which an atom is removed from the system, is ionized 
in a vacuum, and then the ion and conduction electron pair is reintroduced into the 
system, must cost no net energy. The procedure we shall follow bas two steps. We 
first require equilibrium of the mixture at fixed total density; we then remove that 
constraint and require, instead, equal total pressure and chemical potential. We shall 
give a simple model as an example, in which the first step causes a firstader phase 
transition at which the conduction electron density jumps: this we consider to be the 
MNM transition; tile second step results in the LV transition. The critical points are 
distincr 

We begin with the general framework for the mixture. We then treat the simplified 
model which, though it is unrealistic, yields the type of features we seek. After 
discussing the results, we point out how to set up a more realistic model, which will 
maintain the general type of results obtained in the previous simplification. 

The Helmholtz free energy of the twocomponent mixture, per unit volume, is 
written by explicitly separating atom and ion ideal-gas terms (with no further loss in 
generality): 

where A is the atomic de Broglie thermal wavelength and is the atomic (ionic) 
density; we assume two spin states for the atoms (a single valence electron) and one 
for the ions. The thermal energy is k,T. As we wish to demand thermodynamic 
equilibrium between the components, we first construct the grand potential R and 
then extremize it with respect to 6 E pa - pi, at fixed total density, pr p, t pi. By 
definition 

The chemical potentials (pa($ are defined as af/ap,(i). The first term in round 
brackets in (2) is the free energy of the equivalent one-component system, and the 
term in square brackets its chemical potential. We have used an exact, previously 
noted, equilibrium requirement: replacing pl-pi by E, the atomic vacuum ionization 
potential. Extremizing (2), at ked  total density, relates the atomic and ionic densities: 
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with pe af,/ap, - afJap,. This relation, when inserted into (2), yields the 
extremized grand potential; the system will choose the absolute minimum. A first- 
order phase transition may result, which we would interpret as an MNM one (at zero 
temperature the conduction electron density would jump from one per nucleus to 
zero). An LV coexistence curve may now be obtained, on lifting the constant total 
density requirement and requiring equal total pressures and chemical potentials. For 
any temperature, the total density at which the MNM transition takes place, if it does, 
must lie in the interval between the corresponding vapour and liquid values. This fact 
may be appreciated by constructing isotherms of extremized grand potential against 
total density and examining the conditions for the phase transitions described. The 
only approximation introduced thus far is limiting the variational basis. 

Figure 1 shows two isotherms of the atomic against ionic density that (3) could 
yield; note that E is a constant, depending on the material, while pe depends on 
pi, pa and T.  A fked total-density example is presented in this figure; it has to 
be a straight l i e  of slope -1. The intersection(s) of this line and those of (3) 
correspond to grand-potential extrema. A single crossing is a minimum, while a triple 
crossing corresponds to local minima with a maximum in between. In this latter 
case, the system will choose the lower of the two minima, with the first-order phase 
transition occurring when the minima are degenerate. As the temperature is raised 
and the triple crossing degenerates to a single ionic density, the critical point for this 
transition has been reached. This critical point can be described by the conditions 
that the crossing must take place at a point at which the first derivative of pa with pi 
is -1 ,while the second derivative vanishes. 

We provide a specific example in which the above pair of phase transitions takes 
place, by caricaturing f, to be merely due to electronic kinetic energy and exchange 
in the jellium model (the electronic Hartree-Fock solution to the jellium problem). 
An effective attractive interaction is being introduced, as well as terms of the ideal-gas 
type. The model is physically unrealistic for the alkali fluids, but it is instructive. In 
a further approximation, we shall use the familiar T = 0 result [7], fully realizing we 
are thereby neglecting a physical effect (the full ionization of atoms at sufftciently low 
densities due to entropy considerations). In this case, using atomic units, we have 

fe(pi) = (3kg/10-  3kF/4r)(k$/3n2) k; = 3 r z p i .  (4) 

Thus, pe(kF)  is a parabola ( k ; / 2 -  k F / r ) .  The above function can now be used in 
(3) to yield the equilibrium atomic density for each ionic density, temperature and 
material (specified by E). For any E < 1.38 eV (the marjmum value of -fie), there 
will be a first-order MNM transition. The values of ,+, as a function of temperature, 
at which the minima of 0 become degenerate specify the phase-transition line. In 
figure 1 the value of E = 1 eV was used to give examples of (3). The 1800 K example 
shows the magnitude of 'the jump of pi at the phase transition. The phase separation 
line is shown in figure 2, as the shortdash broken curve, for E = 1 eV. For any E, 
the critical point of this transition is described by the ionic density and temperature, 
which self-consistently satisfy ((3) with a first derivative of pa with pi = -1, while the 
second derivative vanishes): 

(kBT)-' = -pf/pi2 - 2/pip:  -be t E ) / k , T  = W ( 1  t ~ ~ ~ 3 ~ 3 1  (5 )  

where the primes indicate derivatives with pi. 
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Figure 1. Possible isotherms (T2 > TI) 
representing (3), in arbitrary units; the straight 
line is a mnstant total density; its intercepts with 
the isotherms are the exlrema of (2). The CUN~S 

are obtained (see texl after (4)) using E = 1 eV, 
TI = leWK, Tz = 2150K; the straight line is for 
the phase vansition at TI, T, = 2087K, and the 
densily units are 10-3au. 

Figore 2 Phase diagrams for the simplified model 
( E  = lev). The shortdash broken cuwe is the 
MNM transition. The longdash broken cuwe is the 
plasma (no atoms) mexislence C U N ~  10 which the 
atomic densities (from (3)) are added to oblain the 
full cuwe, which is the LV coaistence c u m .  Nole 
that at low temperatures the vapour has negligible 
ionic density and the liquid has negligible atomic 
density. 

In this example the atomic ideal-gas assumption decouples the a t o m  and 
simplifies the analysis of the LV transition. Requiring that the plasma (ion ideal 
gas plus the T = 0 jellium) yield an LV coexistence can be demanded from equal 
pressures and chemical potentials, whose values for the plasma are well known. The 
plasma coexistence is shown as the longdash broken curve in figure 2 Its critical- 
point parameters are obtainable analytically (from requiring vanishing first and second 
derivatives of pressure with density at the critical point): 

pic = 1414 kBT, = PPIP.:' P,, = -f, + P ~ ~ ( ~ B T ~  + ~ d .  (6) 

Using (4) in (6) yields pi, = (241r5)-', kBT, = (12nZ)-', I?, = (28807r7)-'; in 
common units these values are respectively: 0.918 x loz' 2662K (for the critical 
temperature) and 33.8 bar. These results are independent of E. As the interaction 
is unrealistically weak (pel+,& = -1.38 eV), a small enough E is needed (in (5)) to 
allow an MNM transition. Its critical point depends on E but both its temperature 
and ionic density are always lower than those of the plasma critical point. If E 
were chosen to be too large (>1.38 eV, for this example) there would always be 
more a t o m  than ions and no MNM phase transition; instead, there would only be 
a weakly ionized plasma. Finally, the total LV coexistence curve (now including the 
atoms) is shifted from that of the plasma by the appropriate equilibrium density of 
a t o m  at each temperature (3). This shift cannot change the critical temperature 
and it maintains equal pressures at coexistence. The stepwise procedure descrihed 
gives identical results to one proceeding from extremized R. For the E = 1 eV 
example, the total Lv coexistence curve is also shown in figure 2. Note that in this 
simplified model the critical temperature coincides with that of the plasma, and thus is 
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independent of E, while the total critical density and pressure are increasing functions 
of E. the plasma values given above plus the ideal-gas contribution of the atoms (p, 
from (3) and P, = p,k,T).  The plasma transition (like the MNM one) is not a direct 
experimental obsemble, being an intermediate calculational step. Naturally, in such 
a mean-field calculation, the LV critical exponents are classical (as the critical point 
is approached, an analytic free energy leads to a symmetric coexistence curve-in 
contrast to experiment). 

The general features resulting from this example are in striking qualitative accord 
with those measured (Cs and Rb) [SI or extrapolated (other alkali) [9] for the Lv 
transition of such simple fluids (the experimental E ranges from 3.89 eV for Cs to 
5.39 eV for Li): a critical temperature that varies weakly with material (1924 K for 
Cs to - 3000K for Li), and more strongly varying critical densities and pressures 
that increase with E (1.71 x 102' ~ m - ~ ,  92 bar for Cs to - 3.4 x 102' - 500bar 
for Li). Model results and observations are also of a smoothly changing electron 
concentration throughout the single-phase region [I]. 

Having shown that a simplified mixture model can yield the general features 
observed experimentally, we suggest a more realistic treatment method for 
f,(p,, pa, T), which allows using the experimental E values, extending the normal 
one used for simple liquid metals [3, IO]. A jellium model is first treated, in 
which the ions are smeared out to form a uniform positive background whose 
efEect is to cancel the Hartree interactions among the electrons. A hard-sphere 
reference system is then introduced for the ions, along with an electron-ion 
pseudopotential and an electron response function. The electron-ion interactions 
modify the jellium results via perturbation theory and the ion-ion interactions are 
modified, now being controlled by the hard-sphere pair correlation function and the 
screening due to the electron response function. The model contains effects of hard 
spheres, pseudopotentials, a temperaturedependent exchange [I I], and approximate 
conductionelectron correlation and response functions. The introduction of the 
atoms into the above scheme can be accomplished using the device of treating the 
system as a mixture; the interactions of the atoms with each other and with the other 
system components must be included. 

We note that if in such a procedure the atoms are approximated as a hard-sphere 
system (assumed dominance of the interactions among charges) then the resulting 
critical temperatures are too high. Such an approximation appears to overemphasize 
the charged-particle interactions. It seems that the effect of interactions with the 
atoms will result in an attempt by the atoms to surround each ion; such an effect 
would be similar to the positive molecular ions that were suggested previously 151. 
Preliminary calculational results are of the type described by the very simplified model 
discussed previously. A full a m u n t  of the work with the detailed model will be 
published elsewhere [IZ]. A similar approach could be investigated for application to 
divalent-atom systems (Hg, for example). In that case a thermal equilibrium mixture 
of atoms, monopositive and dipositive ions (and of course electrons) needs to be 
considered The caricature that has been given for f, would be even more unrealistic 
for such a case, since the cancelling Hartree term does not allow differentiation 
between monopositive and dipositive ions in the interactions. Detailed consideration 
of such systems must await improved treatment methods such as that described above. 
The central simplifying assumption in the theoretical framework presented limits the 
electrons to a variational choice between delocalized conduction states and the free- 
atom ground valence state, It is probable that this assumption leads to the first-order 
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nature of the MNM transition, and strongly determines its critical point. A more 
flexible variational basis might be needed for quantitative work However, there is 
little point in detailed arguments about a transition that cannot be. experimentally 
observable. The only reasonable argument is on the effects in the vapour, liquid or 
gas that enhancing the basis might yield. A more flexible basis may be incorporated 
into the present framework by changing from a twocomponent to a multicomponent 
mixture; some of the components might be multi-atom ones. 

In the type of framework discussed, treatment of the purely electronic 
properties, such as electrical conductivity, are phenomenologically straightfonvard 
(the conductionelectron density is calculated and mean-free paths, for instance, could 
be estimated), though clearly we have not yet delved into the difficult problems of 
localization through disorder or the details of electronic correlations (other than in 
the crude but essential manner leading to electron localization to form atoms). Aka, 
the description has concentrated on the thermodynamic coexistence conditions, but 
this is merely from choice; there is no problem in attempting to find equations of 
state, for instance. 

In summary, a powerful but conceptually simple framework has been presented 
to show that the metal-non-metal and liquid-vapour transitions of simple metal- 
atom fluids can be unified and differentiated, with the electronic and thermodynamic 
properties being on an equal footing. A mixture framework is sufficient to unify 
the effects observed experimentally. A simplied, though unrealistic, model has been 
treated in some detail to exemplify the previous assertions and to show the minimal 
conditions required to obtain the qualitative features observed in experimental 
measurements of these materials. A more realistic treatment has been briefly noted 
and such calculations are underway. 
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